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Introduction

Since the early 1990s, the number of sequences in the GenBank database has increased
exponentially, and as of February 15, 2007 had reached more than 67 million sequences,
with an average size of more than 1000 base pairs (NCBI 2007). This incredible
explosion of data acquisition has been fueled by the application of polymerase chain
reaction (PCR) technology to environmental samples and the increasing affordability of
DNA sequencing for entire microbial genomes. The statistics listed above do not include
the 86 billion bases of sequence generated by whole genome shotgun sequencing
projects. Since the first microbial genome was sequenced in 1995, the number of
sequenced microbial genomes has reached nearly 500 and continues to rise.

As the amount of sequence data increases exponentially, systematic biologists are
scrambling to place this information in a biologically meaningful context. This task
primarily involves structuring the data in terms of evolutionary relationships as shown in
a phylogenetic tree.  However, the algorithms traditionally used to build phylogenetic
trees often become overwhelmed as the number of sequences for analysis increases,
resulting in reduced accuracy of tree structure and absurdly long computation times. The
implementation of new or modified algorithms for handling large sequence datasets is
paramount to our understanding of evolutionary processes in genomes and gene
sequences.  This problem is of particular interest to those researchers attempting to
reconstruct the organismal Tree of Life, which presents a formidable challenge of many
taxa with deeply divergent sequences.  This review covers a number of the strategies
proposed for increasing efficiency and accuracy in computing phylogenetic trees and
provides a critique of what modifications will be necessary to tackle increasingly growing
collections of genetic sequences.

Basic Tree-Building Algorithms

In general, phylogenetic reconstruction is based on one of three principles: minimum
evolution, maximum parsimony, or maximum likelihood.  Minimum evolution (ME)
methods find the optimal tree that minimizes the total sum of the branch lengths.  These
methods compute a distance matrix for the sequences based on a given evolutionary
model and then build the tree from this matrix.  They include the popular neighbor-
joining (NJ) method (Saitou and Nei 1987) and the unweighted pair group method with
arithmetic averages (UPGMA) (Sokal and Michener 1958).  Similarly, but in a slightly
different way, maximum parsimony (MP) methods search for a tree that explains the
phylogeny using the minimum number of evolutionary changes (Fitch 1971).  A tree
length value is computed for each tested topology and the most parsimonious trees have



the minimum tree length value.  Maximum likelihood (ML) methods compute a log
likelihood score for each tested topology and choose the optimal tree achieving the
maximum score (Felsenstein 1981).  A more thorough description of these families of
methods is found in (Felsenstein 1988).

As the number of sequences analyzed increases, the number of possible topologies
increases exponentially, so that it rapidly becomes prohibitive to analyze all possible tree
topologies for a modestly sized dataset.  Since MP and ML algorithms rely on the
comparison of multiple trees, one for each possible topology, heuristic searches are
typically used to only search a subset of the possible trees to find the optimal tree.
Different methods exist for guiding the heuristic search to ensure that the trees searched
are closest to the true tee.  In addition to the heuristic search algorithms, branch-swapping
algorithms are used to test outputted trees, by rearranging the topology of the tree and
selecting for the optimal rearrangement.  Generally, one of three branch-swapping
algorithms are used: nearest-neighbor interchanges (NNI), subtree pruning and regrafting
(SBR), and tree bisection-reconnection (TBR).  The algorithms are listed here in order of
increasing computational complexity.  Takahashi and Nei found that MP and ML could
be improved greatly by using NNI, with little to no improvement when using other
branch-swapping algorithms, but for ME-methods, NJ-NNI was not significantly more
accurate than NJ alone (2000).

Criteria for Evaluating Algorithms

Some factors that influence the accuracy and efficiency of tree building algorithms are
sequence length, the number of taxa, and model of evolution.  Generally, accuracy
increases as the sequence length increases and the number of taxa decreases (Nakhleh et
al. 2002; Sanderson and Driskell 2003).  When collecting data, it is valuable to know
what accuracy is required for your application since the scaling of sequence length
required for a given number of sequences improves with decreasing accuracy threshold
(Bininda-Emonds et al. 2001).  Most studies have shown that simpler models of evolution
provide for more accurate trees, but there is some uncertainty about how appropriate
different models are for real datasets.  Besides characteristics of the dataset in question,
fundamental traits of the algorithm in question should be considered.  Statistical
consistency is the property that the optimal estimation of a method approaches the true
value as the amount of data included increases.  For phylogenetic trees this would mean
that the method would produce an optimal tree closer in topology to the true tree as the
length of the sequences analyzed increases.  Although there is some disagreement among
statisticians as to the relative importance of this property in validating an algorithm, it is
generally accepted that consistency should be proven for all algorithms.  Users should
also decide what output information from a phylogeny is most useful for their analysis.
While many methods are designed to compute branch lengths along with the branching
structure of the tree, there is often a trade-off between accurately depicting branch lengths
versus topology (Takahashi and Nei 2000).  Computation speed is a factor controlling the
ability of certain methods to be used for a given dataset, but faster methods are being
developed which should overcome these problems as explained below.



Simulations

Computer simulations are often used to evaluate algorithms for several reasons.  First, for
a given set of sequences, the true phylogeny may not be known, so there is no gold
standard to compare results in computing the accuracy.  Simulations allow the
computation of synthetic datasets from a given tree topology, so the true topology is thus
known.  Second, we would often like to test algorithms for sequences with specific
properties.  By constructing synthetic sequence datasets, the tester can manipulate factors
such as evolutionary rate or overall evolutionary distance, while controlling for other
factors that could influence the analysis.  Finally, when considering the use of an
algorithm on increasingly large datasets, real data of the appropriate size may not be
available or continuous over a range in question.  Fortunately, synthetic datasets can be
constructed for any given size of interest.  Of course, simulated data may not respond in
the same manner as real data in the analysis and should be verified whenever possible.
Many researchers have noted that optimal trees appear to be more easily found for
synthetic data as compared to real data (Williams et al. 2006).

Genes Versus Genomes

Most sequence information in biological databases falls into a bimodal distribution, with
complete genomes from individual organisms in one peak and individual genes from
many organisms in the second peak.  The former group is characterized by relatively few
sequences on the order of 106 or more bases, while the latter is characterized by many
sequences on the order of 103 or fewer bases.  This discrepancy means that algorithms
that work well for one of these groups may not work well for the other group.  The main
reason is that as the length of sequences increases, so does the ease with which an
accurate phylogeny is returned.  In contrast, as the number of taxa increases, the accuracy
of the optimal tree generally declines.  Therefore, different algorithms for trees from long
sequences (genomes) are more likely to comparable results, but differ in computational
complexity.  In this situation, the user is most likely to select the fast algorithm due to
little sacrifice in accuracy.  Furthermore, building phylogenies for genomes is likely to be
more restricted by multiple sequence alignment problems.  For shorter sequences (genes)
and large numbers of taxa, there is a trade-off between speed and accuracy that demands
optimization.  Although building phylogenies for large numbers of genomes is likely to
be of interest in the future, this review pertains more to the immediate problem of
constructing phylogenies from large numbers of short sequences (< 2kb).

Horizontal Gene Transfer

Evolution of eukaryotic organisms is dominated by vertical descent of genetic
information from parents to progeny.  In some bacteria and archaea, the evolutionary
process can be greatly influenced by the horizontal transfer of genes among often
distantly related species or even genera.  The result of this process is that gene sequences
from one bacterium may be more closely related to sequences from another species than
to sequences within its own species.  If ignored, horizontal gene transfer (HGT) can
confound phylogenetic inference and lead to false conclusions.  An important distinction



must be made as to how to handle phylogenies for one or more genes in organisms with
high rates of HGT.  Phylogenetic trees may be used for individual genes or short
sequences without violating the assumption that all parts of the sequence evolved
together in a vertical fashion.  By comparing these trees for several short sequences, it
may be possible to detect HGT between organisms and identify which genes do not
match the evolutionary history of the rest of a genome.  In contrast, phylogenetic trees
cannot be used to construct phylogenies from longer sequences that contain a subset of
horizontally transferred genetic information.  Under these circumstances, the user must
employ techniques that allow separate evolutionary paths for different parts of a sequence
(Jin et al. 2006).  Several tools using modifications of the algorithms described in this
review will construct a phylogenetic network for such data instead of a tree.  For a review
of these methods see (Morrison 2005).

Choosing A Method for Phylogenetic Inference

The three main categories of algorithms for building phylogenies described above each
have benefits and shortcomings that will influence the choice of a particular algorithm for
a given dataset.  All of the methods for constructing phylogenetic trees require the user to
make assumptions about the evolutionary processes involved in generating the dataset of
interest (Felsenstein 1988).  We are still learning how changes in many factors affect the
behavior of these algorithms and are incrementally increasing our knowledge of how
reliable a given method can be.  Simulation studies have greatly increased our ability to
test the effects of different factors and evaluate the accuracy and efficiency of different
methods.  Studies have shown that distance methods perform optimally for sequences
with larger evolutionary distances relative to the optimal datasets for maximum
parsimony (Guindon and Gascuel 2003).  This is primarily due to the fact that the number
of informative sites underestimates the actual number of evolutionary changes as the
evolutionary distances between sequences increases.  Simulations indicate that criteria-
based methods such as MP and ML are more likely than ME methods to find an optimal
tree approximating the true tree, despite the fact that the former algorithms generally
operate on a heuristic search rather than extensive searches for the optimal tree (Pupko et
al. 2000; Guindon and Gascuel 2003).  MP methods also have been shown to suffer when
sequences have evolved at different evolutionary rates (Williams et al. 2006).

Evolutionary Models of Sequence Divergence

The construction of any distance-based or maximum likelihood phylogeny requires the
assumption of a model for how the sequences analyzed changed over time.  The simplest
models (uncorrected “p”, Jukes-Cantor) assume that all substitutions have equal
probability at all sites, and despite the fact that these assumptions are probably invalid,
these models behave almost equally well as more complicated models (Takahashi and
Nei 2000; Bininda-Emonds et al. 2001).  However, analysis of real sequence datasets has
revealed the presence of heterogeneity in substitution rates from site to site and also from
sequence to sequence.  To improve on the error and bias found in these models, Ninio et
al. created iterative Bayesian methods that estimate evolutionary rates across the entire
tree by using all sequences and the current estimate of the phylogeny to estimate the rates



(2007).  Despite modifications in models of substitution that better represent real
sequence data, there is still plenty of room for improvement in this area of research.

Minimum Evolution Algorithms

The neighbor-joining (NJ) method is an agglomerative method, which progressively
builds a tree by connecting the two sequences with the smallest distance, starting at the
leaves of the tree and progressing along internal nodes toward the root (Saitou and Nei
1987).  While the presence of a single optimal tree for the specified distance matrix keeps
the computation time short, the mistaken mispairing of sequences early in the
agglomeration can significantly reduce the accuracy of the tree.  This fact makes the
distance-based ME methods highly susceptible to improper use of a model of evolution
for the sequences.  Topological rearrangements of ME trees can overcome the
shortcoming of agglomerative methods by testing trees with swapped branches for
improvement in total branch length minimization over the original tree.  The major
benefit to using NJ is the computational speed with which a dataset can be analyzed: on
the order of n3 for computing the initial tree and pn3 for branch-swapping, where n is the
number of sequences and p is the number of rearrangements (Desper and Gascuel 2002).

Although, NJ was originally thought to operate by minimization of the ordinary least
squares (OLS) estimate of the tree length, Gascuel and Steel showed that NJ instead
performs a local optimization in selecting sequence pairs that is comparable to heuristic
searches in other methods (2006).  However, the same study notes that algorithms truly
optimizing the OLS criteria do not necessarily have more accurate topologies (Gascuel
and Steel 2006).  As a faster alternative to NJ, Desper and Gascuel designed a new
algorithm called FastME that operates on a “balanced minimum evolution” criteria,
where subtrees have equal weights irrespective of the number of sequences contained in
each, as opposed to the OLS criteria that weighs each sequence equally (2002).  Gascuel
showed through simulations that this balanced criteria was better suited than OLS to
biological sequence data (2000).  This intuitively makes sense since OLS assumes equal
variances in all sequences, a principle known to be false.  Simulations with FastME, NJ,
and other ME-based algorithms showed the greedy and balanced ME algorithms with
balanced nearest-neighbor interchanges (BNNI) to outperform the other methods in terms
of topological accuracy (Desper and Gascuel 2002). The greatest contribution from this
method is the BNNI algorithm for branch-swapping, which greatly improved tree
topology in all ME methods tested and had a computational complexity on the order of n2

for most datasets.  FastME (GME + BNNI) improves on the computational speed of NJ
by only requiring a calculation of the tree length after the final topology has been
reached, and scales much better than NJ for increasing number of sequences.

Maximum Likelihood Methods

The maximum likelihood criterion is arguably the most accurate means for building a
phylogenetic tree.  Unfortunately, the methods employing this criterion are also
computationally very complex and require long execution times for any datasets
containing more than one dozen sequences.  Recently, several faster algorithms using ML



have been proposed, and two prominent examples will be described here.  In 1994, Olsen
et al. introduced fastDNAml (1994), which made several modifications to an existing
algorithm by Joe Felsenstein (fastML) to increase its computational efficiency.  First, the
authors substituted an unproven, but empirically good and fast algorithm for optimizing
branch lengths.  Second, optimization of branch lengths was changed from focusing on
individual branches to optimizing all branches in a tree simultaneously.  Finally, locations
of new added sequences are chosen without reoptimizing the tree, rather the tree is
refined after the new branch is added.  The modifications reduced computation time with
no observed decrease in accuracy, allowing up to 100 sequences to be analyzed in a
reasonable time frame.  This most recent version is implemented as part of PHYLIP
(Felsenstein 1989).

Although fastDNAml was able to reduce the overall computation time for ML datasets,
practically this method is still limited to datasets of 100 sequences or fewer.  Guindon
and Gascuel realized that a large contribution to the long computation times is due to the
separate optimization of branch lengths and topology (2003).  By simultaneously
optimizing topology and branch lengths, these authors were able to maintain topological
accuracy while vastly improving the speed with which the analysis is completed for large
numbers of sequences.  Their improved ML algorithm is implemented in the PHYML
package (Guindon et al. 2005).  First, a tree is constructed for the dataset based on a rapid
distance-based algorithm.  Then, the maximum likelihood of the tree is maximized
through the independent adjustment of branch lengths and branch swapping.
Construction of the initial tree takes on the order of n3 time, and the likelihood
optimization step for topology and branch lengths is on the order of pns time, where p is
the number of refinements, n is the number of taxa, and s is the sequence length.  Since p
is always much smaller than n, this step does not take significantly longer than most
distance-based tree building algorithms.  Indeed, when tested on synthetic datasets of 100
taxa and 500 base pairs in length, PHYML had an average run time of 12 seconds, while
NJ and fastDNAml had average computing times of 2.3 seconds and 32.6 minutes,
respectively (Guindon and Gascuel 2003).  The PHYML algorithm also computed a ML
tree for 500 plant plastid sequences (1428 bp) in less than 12 minutes.  These results
demonstrate that modifications to the ML algorithms can make them nearly as fast as
other distance-based methods, while providing a more accurate depiction of the “true”
topology.

Disk-Covering Methods

Recently, Tandy Warnow and colleagues have created a suite of programs called Disk-
Covering Methods (DCMs) that can be coupled with existing tree building programs to
aide in more rapid convergence to the optimal tree through a divide-and-conquer
approach.  DCMs operate by first decomposing the dataset into a number of overlapping
subsets of sequences called disks, then building trees for each subset using any
phylogenetic tree program, and finally constructing a supertree from the amalgamation of
the subset trees using a strict consensus merger.  Consequently, the DCMs can be seen as
boosters of the phylogenetic tree methods and are not restricted to any single
optimization criterion.



The first version, DCM1, was designed to boost distance methods and operated by
choosing one optimal supertree from many supertrees generated for different
decompositions of the dataset (Huson, Nettles, and Warnow 1999).  Simulations showed
that combining DCM1 with neighbor-joining resulted in highly significant reductions in
both false positives and false negatives compared to NJ alone, especially for shorter
sequences.  Warnow et al. were also able to prove that a specific sequence length will
result in high probability of finding the true tree for Markov models of evolution (2001).
However, while DCM1 does produce small rapidly solvable subproblems, the structure of
the decomposition was found to be poor in some circumstances (Roshan et al. 2004).

To correct this, the second version, DCM2, used a fixed structure to decompose the
dataset (Huson, Vawter, and Warnow 1999).  DCM2 was designed to improve heuristic
searches using MP, and when combined with PAUP* with TBR branch swapping
resulted in improved accuracy with less computation time on simulated datasets.  This
method was also combined with GRAPPA, a direct optimization method for gene order
data (Tang and Moret 2003).  GRAPPA is computationally expensive, so it is only
feasible for subproblems of fewer than 15 taxa.  Optimization with DCM2 allowed for
large synthetic datasets to be analyzed, and improved on NJ and DCM-NJ over a range
up to 640 taxa, particularly for higher evolutionary rates of change.

In light of the shortcomings in the first two versions, Roshan et al. introduced DCM3,
which chooses a decomposition of the dataset based on a consistently updated guide tree
(2004).  This change results in small subproblems that are directed within the tree space
closest to the current phylogeny estimate.  The authors also combined DCM3 with a
recursion step that reduces subproblems to a manageable size and an iteration step that
successively refines the guide tree toward the optimal topology (Roshan et al. 2004).
This new booster algorithm, Rec-I-DCM3, was combined with MP and shown to
statistically outperform the maximum parsimony method TNT over all tested datasets and
time intervals.  Detsenko et al. (2006) showed that running Rec-I-DCM3 in a parallel
master-slave model produced better MP scores in a fraction of the time, with the optimal
arrangement being 8 worker CPUs.

Summary and Conclusions

The optimization of criteria for both maximum parsimony and maximum likelihood
becomes prohibitively time consuming as the number of sequences analyzed increases.
Coupling of branch length and topology optimization in the PHYML package appears to
make this implementation of maximum likelihood competitive in terms of computational
time required.  Additional improvements may be possible by merging this approach with
one of the disk-covering methods described above.  Another benefit of this type of
optimization approach is that the model of evolution can also be modified during the
procedure to better represent the model reflected by the resultant topology.  This flexible
model of evolution will probably be a much better estimate of the true evolutionary
mechanisms, and can be tailored to each dataset, instead of trying to fit one model to all



the genes studied.  This is especially important since sequence representation in databases
used for generating models will definitely have bias toward certain gene families.

Currently, the best approaches for reducing computational complexity involve the
decomposition of the dataset into smaller overlapping subsets that can be solved
individually.  Recursion with DCM3 provides the most promising technique for
decomposition by using the most recently updated guide tree to divide the data into
appropriately sized subproblems.  Constructing and merging the resulting subtrees into a
consensus supertree may also provide a bottleneck in the computation time required,
especially for a small percentage of the subtrees that are difficult to optimize (Tang and
Moret 2003).  A primary advantage of the PHYML and DCM methods, which should be
considered for all new algorithms, is the ability to escape local optima and converge
quickly on the globally optimal tree.

Future improvements on the DCM-based methods should focus on identifying the most
difficult subproblems and possibly avoiding them.  This could involve a new local
decomposition that results in overlapping subproblems of lower complexity or relaxing
the optimization criteria.  Alternatively, it may be possible to iteratively solve the
subproblems using a simpler criterion and providing an estimate of the statistical
significance of the branching structure in the trees.  In other words, it may not be worth
the time to find an optimal solution, if we can instead find a near-optimal solution with
bounds for our confidence in the given topology.  The combination of iteration and
recursion will be necessary for high accuracy and efficiency of any method building
phylogenies for large datasets, since the effect of these processes is to avoid local optima
and narrow the search to the best subsets of the tree space.  When possible, multiple
CPUs running in parallel can greatly improve efficiency of the tree building programs,
especially since it is complementary to the divide-and-conquer approach of the DCMs.
The use of supertree methods for assembling divide-and-conquer subtrees have become
popular in newly designed methods for phylogenetic analysis (Sanderson and Driskell
2003), but the robustness of supertree construction should be further evaluated to ensure
all elements of the phylogenetic tree are properly represented.

Finally, the use of simulated datasets has been tantamount to the verification of
phylogenetic inference methods for large datasets and for testing the impact of individual
factors to the accuracy of such methods.  However, the usability of any method is
dependent on its robust performance on various different types and quantities of real
sequence data.  Therefore, it is of utmost importance that simulated datasets accurately
represent the characteristics of real data.  As the amount of sequence data in public
databases increases, a concerted effort should be made to construct large phylogenetic
trees from this data and to use these actual topologies when generating simulated data for
use in verification studies.
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